Search results for "nutrient availability"

showing 6 items of 6 documents

Influence of plant traits, soil microbial properties, and abiotic parameters on nitrogen turnover of grassland ecosystems

2016

International audience; Although it is known that multiple interactions among plant functional traits, microbial properties , and abiotic soil parameters influence the nutrient turnover, the relative contribution of each of these groups of variables is poorly understood. We manipulated grassland plant functional composition and soil nitrogen (N) availability in a multisite mesocosm experiment to quantify their relative effects on soil N turnover. Overall, root traits, arbuscular mycorrhizal colonization, denitrification potential, as well as N availability and water availability, best explained the variation in measured ecosystem properties, especially the trade-off between nutrient sequest…

0106 biological sciencesleaf traitsSoil biology[SDV]Life Sciences [q-bio]ammonia‐oxidizing archaea and bacteriawater availability010603 evolutionary biology01 natural sciencescomplex mixtures[ SDV.EE ] Life Sciences [q-bio]/Ecology environmentMesocosmnitrite reducersNutrientlcsh:QH540-549.5Ammonia-oxidizing Archaea And Bacteria ; Arbuscular Mycorrhizal Colonization ; Ecosystem Properties ; Grasslands ; Leaf Traits ; Nitrite Oxidizers ; Nitrite Reducers ; Nutrient Availability ; Root Traits ; Water AvailabilityEcosystemEcology Evolution Behavior and Systematics2. Zero hungerAbiotic component[SDV.EE]Life Sciences [q-bio]/Ecology environment[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology[ SDV ] Life Sciences [q-bio]EcologyEcologySoil organic mattergrasslandsfood and beverages04 agricultural and veterinary sciences15. Life on landnitrite oxidizersammonia-oxidizing archaea and bacteriaroot traitsAgronomySoil water040103 agronomy & agriculturearbuscular mycorrhizal colonization0401 agriculture forestry and fisheriesEnvironmental scienceecosystem propertieslcsh:Ecologynutrient availabilityammonia-oxidizing archaea and bacteria;arbuscular mycorrhizal colonization;ecosystem properties;grasslands;leaf traits;nitrite oxidizers;nitrite reducers;nutrient availability;root traits;water availabilitySoil fertility[SDE.BE]Environmental Sciences/Biodiversity and Ecology
researchProduct

Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities

2016

International audience; Plant species influence soil microbial communities, mainly through their functional traits. However, mechanisms underlying these effects are not well understood, and in particular how plant/ microorganism interactions are affected by plant identities and/or environmental conditions. Here, we performed a greenhouse experiment to assess the effects of three plant species on arbuscular mycorrhizal fungal (AMF) colonization, bacterial potential nitrification (PNA) and denitrification activities (PDA) through their functional traits related to nitrogen acquisition and turnover. Three species with contrasting functional traits and strategies (from exploitative to conservat…

0106 biological sciencesNutrient cycle[SDE.MCG]Environmental Sciences/Global Changesmedia_common.quotation_subjectSoil Science010603 evolutionary biology01 natural sciencesCompetition (biology)[ SDE ] Environmental SciencesNutrientBotanyColonizationNitrification enzyme activityBromus erectusmedia_common2. Zero hunger[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyMycorrhizal colonizationEcologybiologyfungifood and beveragesRoot traits15. Life on landbiology.organism_classificationAgricultural and Biological Sciences (miscellaneous)Colonisation[ SDE.MCG ] Environmental Sciences/Global ChangesDactylis glomerataAgronomyLeaf traits[SDE]Environmental SciencesShootNutrient availability[SDE.BE]Environmental Sciences/Biodiversity and EcologyDenitrification enzyme activity010606 plant biology & botanyApplied Soil Ecology
researchProduct

Macroalgal responses to ocean acidification depend on nutrient and light levels

2015

Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ …

macroalgaelcsh:QH1-199.5Padina pavonicaocean acidificationOcean Engineeringphenolic compoundslcsh:General. Including nature conservation geographical distributionAquatic SciencePhotosynthetic efficiencyOceanographyPhotosynthesisNutrientAlgaeBotanyMarine Sciencelcsh:ScienceWater Science and TechnologyGlobal and Planetary ChangephotosynthesisbiologyDictyotalesbiology.organism_classificationphotophysiologyEnvironmental chemistrylcsh:Qnutrient availabilityFucalesEutrophicationFrontiers in Marine Science
researchProduct

Dietary Microperiodization in Elite Female and Male Runners and Race Walkers During a Block of High Intensity Precompetition Training.

2017

We investigated one week of dietary microperiodization in elite female (n = 23) and male (n = 15) runners and race-walkers by examining the frequency of training sessions and recovery periods conducted with recommended carbohydrate (CHO) and protein availability. Food and training diaries were recorded in relation to HARD (intense or >90min sessions; KEY) versus RECOVERY days (other-than KEY sessions; EASY). The targets for amount and timing of CHO and protein around KEY sessions were based on current nutrition recommendations. Relative daily energy and CHO intake was significantly (p < .05) higher in males (224 ± 26 kJ/kg/d, 7.3 ± 1.4 g/kg/d CHO) than females (204 ± 29 kJ/kg/d, 6.2 ±…

Gerontologynutrient timingAdultMalemedicine.medical_specialtyPeriodicitySports medicineMedicine (miscellaneous)030209 endocrinology & metabolismWalkingSports nutritionNutrition PolicyRunning03 medical and health sciencesrecoveryYoung Adult0302 clinical medicineAnimal scienceSurveys and Questionnaireselite athletesDietary CarbohydratesMedicineHumansOrthopedics and Sports MedicineElite athletesNutrition and Dieteticsbusiness.industryHigh intensity030229 sport sciencesGeneral MedicineFeeding BehaviorProtein intakeDiet RecordsDietSports Nutritional Physiological PhenomenacarbohydrateAthletesFemalenutrient availabilityDietary ProteinsbusinessproteinEnergy IntakePhysical Conditioning HumanInternational journal of sport nutrition and exercise metabolism
researchProduct

Mixotrophic phytoplankton dynamics in a shallow Mediterranean water body: how to make a virtue out of necessity

2018

Mixotrophy is a combination of photosynthesis and direct access to organic carbon sources, mainly through osmotrophy or phagotrophy. This strategy is adopted by several, phylogenetically distinct, phytoplankton groups and is commonly occurring in marine, brackish and freshwater ecosystems. Traditionally, it has been put in relation to both scarcity of inorganic nutrients and poor light conditions. However, we observed blooms of the mixotrophic, toxic haptophyte Prymnesium parvum in different periods of the year and under variable resources availability. The analysis of a 6.5-year data set of phytoplankton weekly records from a Sicilian shallow lake (Biviere di Gela, south-eastern Sicily) al…

0106 biological sciencesPhototrophBrackish waterbiologyEcology010604 marine biology & hydrobiologyAquatic ScienceBiological interactionbiology.organism_classification010603 evolutionary biology01 natural sciencesFreshwater ecosystemOsmotrophyHaptophyteNutrientPhagotrophyPrymnesium parvumBOD 5Settore BIO/03 - Botanica Ambientale E ApplicataPhytoplanktonNutrient availabilityEnvironmental sciencePrymnesium parvumHydrobiologia
researchProduct

BIOCHARS IN SOILS: TOWARDS THE REQUIRED LEVEL OF SCIENTIFIC UNDERSTANDING

2017

The special issue on Biochar as an Option for Sustainable Resource Management Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional …

Soil biodiversityprogramme de recherche scientifique010501 environmental sciences01 natural sciencesSoil managementSoil functionsCHARCOAL PRODUCTION11. SustainabilityBiocharbiodiversity2. Zero hungerSoil healthnutrient cyclessoil remediation04 agricultural and veterinary sciencesCONTAMINATED SOILS6. Clean waterEnvironmental soil science415 Other agricultural sciencesBLACK CARBONsoil physical propertiesSHORT-TERMEnvironmental Engineering[SDE.MCG]Environmental Sciences/Global ChangesSoil biologyManagement Monitoring Policy and Lawecotoxicology12. Responsible consumptionPYROLYSIS TEMPERATURECROP PRODUCTIVITYORGANIC-CARBONsoil organic mattergreenhouse gasesbiocharNUTRIENT AVAILABILITYbiochar biodiversity ecosystem services ecotoxicology greenhouse gases nutrient cycles policy support soil organic matter soil physical properties soil remediation.1172 Environmental sciences0105 earth and related environmental sciencesNature and Landscape ConservationSoil organic matterMICROBIAL BIOMASSEnvironmental engineeringpolicy supportTA170-17115. Life on landGAS EMISSIONS13. Climate action040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceecosystem servicesJournal of Environmental Engineering and Landscape Management
researchProduct